好心情说说吧,你身边的情绪管理专家!
好心情说说专题汇总 心情不好怎么办
等式性质课件
教案课件是教师教学工作的第一步,也是高质量教学的先决条件,每一位教师都应该精心设计自己的教案课件。通过不断更新和完善教案,可以有效提高教学效果。那么,究竟应该如何制作教案课件呢?下面是我们为您准备的“等式的性质课件”相关内容,希望能给您带来启示。非常欢迎您阅读我们网站上的内容!
等式的性质课件 篇1教学内容:教科书第34页例3、例4,试一试和练一练,练习1第46题
教学目标:⑴学生在具体的情境中初步理解等式的两边同时加上或减去同一个数,所得结果仍然是等式,会用等式的性质解简单的方程。
⑵学生在观察、分析、抽象、概括和交流的过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。
⑶学生在学习和探索的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,获得一些成功的体验,进一步树立学好数学的信心。
教学重点:初步理解等式的两边同时加上或减去同一个数,所得结果仍然是等式,会用等式的性质解简单的方程
教学难点:初步理解并会用等式的性质解简单的方程
教学过程:
一、基本训练
⑴口答:什么是方程?
⑵判断:下列各式,哪些是等式,哪些是方程?
8-x=320+30=505+x>9y-16=54
教师谈话:同学们,上节课我们已经认识了等式和方程,今天我们继续学习与等式和方程有关的知识。
二、新知教学
⒈教学例3
一起来看屏幕(课件出示课本例3第一行图片)
⑴观察图1:你能用一个等式表示图片意思吗?(板书20=20)
教师谈话:如果在一边加上一个10克的砝码,天平会怎样?
要使天平恢复平衡,可以怎么办?
⑵出示图2,观察,谁能用一个等式表示吗?(板书20+10=20+10)
⑶同时出示图1和图2,分析比较,用一句话来说说你的理解。
⑷出示图3和图4
学生观察,完成填空。并组织学生同桌讨论,用一句话说说理解。
教师相机引导得出:等式两边同时加上一个数,结果仍然是等式。
⑸出示第3组和第4组天平
学生开展小组学习,引导学生得出:等式两边同时减去一个数,结果仍然是天平。
⑹出示两个结论,引导学生用一句话来说说,引出等式的性质。
学生阅读性质,找出关键字词,加深理解和印象。
⑺课堂练习
书本第4页练一练1
学生独立完成填空
说说填写的依据
思考:为什么+25和―18?可以填其他吗?
⒉教学例4
出示图
⑴学生观察,列出方程(板书x+10=50)
怎
查看更多>>老师每一堂课都需要一份完整教学课件,每个老师都需要将教案课件设计得更加完善。写好教案课件,可以避免老师遗漏重中之重。接下来小编要为大家介绍的是“不等式的基本性质课件”,以下是我们提供的一些经验供大家参考!
不等式的基本性质课件 篇1《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。下面我将具体的教学过程阐述一下:
一、复习导入新课
上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。
1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.
2.理解不等式性质与等式性质的联系与区别.
3.提高观察、比较、归纳的能力,渗透类比的思想方法.
二、探求新知,讲授新课
第一部分:学前练习
1. -7 ≤ -5, 3+4>1+4
5+3≠12-5, x ≥ 8
a+2>a+1, x+3 <6
(1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?
(2)这些符号两侧的代数式可随意交换位置吗?
(3)什么叫不等式?
目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。
第二部分:探究新知:
1.商场a种服装的价格为
查看更多>>励志的句子的编辑对这篇《不等式课件》进行了全方位解读并强力推荐给各位,希望能够得到您的收藏支持。教师会将课本中的关键教学内容梳理成教案课件,因此教师撰写教案须谨慎对待。教案与课件的专业设计是确保教学质量的重要环节。
不等式课件【篇1】1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
a.x≥1 b.x≥-1/2 c.x>1 d.x>-1/2
a.5+4>8 b.2x-1 c.2x-5≤1 d.1/x-3x≥0
a. a>0¬ b.a≥0¬ c.a
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
a. a>4 b. a>2 c. a=2 d.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x-1,则m .
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来
查看更多>>平时的生活中,我们会看到各种各样的范文,范文对我们的生活有着重要的意义,范文主要包含哪些内容呢?也许以下内容“等式课件(必备九篇)”合你胃口!感谢您的参阅。
等式课件(篇1)〔教学目标〕
1、了解等式的概念;
2、利用天平的经验分析得出等式的性质;
3、会利用等式的性质解方程。
〔重点难点〕
等式的性质和运用是重点;利用天平经验抽象出等式的性质是难点。 〔教学方法〕指导探究,合作交流
〔教学资源〕
多媒体设备
〔教学过程〕
一、问题导入
我们知道未知数的某个值是方程的解,但怎样才能知道方程的解是什么呢?方程是含有未知数的等式,我们先来看看等式有什么性质。
二、等式及其性质
1、等式
用等号表示相等关系的式子叫等式。如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。 注意:等式中一定含有等号。
我们可以用a=b来表示一般的等式。
2、等式的性质
观察天平的变化,你能发现了什么?
在平衡天平的两边都加上(或减去)同样的量,天平还保持平衡。
如果把天平看成等式,球和正方体看成数或式,那么你能得到什么结论?
等式性质1等式两边加上(或减去)同一个数(或式子),结果仍相等。 用字母表示为:如果a=b,那么a±c=b±c×3÷3观察天平的变化,你能发现了什么?
把平衡天平的两边都扩大(或缩小)相同的倍数,天平仍保持平衡。
同样地,如果把天平看成等式,球和正方体看成数,那么你能得到什么结论? 等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。 用字母表示为:如果a=b,那么ac=bc;如果a=b,那么a/c=b/c(c≠0)。
注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。
思考:回答下列问题:
(1)从a+b=b+c,能否能到a=c,为什么?
(2)从a-b=b-c,能否能到a=c,为什么?
(1)从ab=bc,能否能到a=c,为什么?
(1)从a/b=c/b,能否能到a=c,为什么?
(1)从xy=1,能否能到x=1/y,为什么?
三、例题
例1 利用等式的性质解下列方程:
(1)x+7=26;(2)-5x=20;(3)-1/3x-5=4.
分析:解方程的结果就是将方程转化为x=a的形式,为此,解方程就要将未知项移到一边,常数项移到另一边。
解:(1)将常数项移到右边,得
x=2
查看更多>>